III B.Tech - II Semester – Regular Examinations – JUNE 2023

MACHINE LEARNING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	Wh	at is a decision tree? Explain ID3 algorithm	L2	CO1	14 M			
	to t	rain a decision tree. Discuss with an example.						
	OR							
2	a)	How are machine learning techniques like	L2	CO1	7 M			
		supervised learning, unsupervised learning,						
		suited to various application domains in the						
		fields of finance, healthcare, retail, and						
		entertainment?						
	b)	Briefly explain the steps involved in	L2	CO1	7 M			
		designing a learning system.						
UNIT-II								
3	Def	ine perceptron. Demonstrate perceptron	L3	CO2	14 M			
	trai	ning rule using AND operations.						
OR								

4	4 D $(1 + 1)$ M $(1 + 1)$ C $(1 + 1)$ L $(1 + 1)$ L $(1 + 1)$							
4	Describe the Multilayer feed forward networks.			CO2	14 M			
	Explain the feed forward error back propagation							
	learning algorithm to train a multi-layer feed							
	forward neural network.							
UNIT-III								
5	a)	What is confusion matrix? Illustrate	L3	CO2	7 M			
		Accuracy, Precision, Recall and F1-score						
		which can computed from the confusion						
		matrix for a binary classification problem.						
	b)	Illustrate Ensembling technique Boosting.	L3	CO2	7 M			
	1	OR						
6	Illu	strate Naive bayes classifier. Discuss with an	L3	CO2	14 M			
	exa	mple.						
				•				
		UNIT-IV						
7	a)	Suppose you are given a dataset consisting	L4	CO4	7 M			
		of 5 data points, each with 2 features (x and						
		y), and labeled as either "positive" or						
		"negative". You want to use the k-nearest						
		neighbor algorithm to classify a new data						
		point with features (3, 4) as either "positive"						
		or "negative", using Euclidean distance as						
		the distance metric. The 5 data points and						
		their corresponding labels are:						
		Data point 1: (1, 2), label "negative"						
		Data point 2: (3, 5), label "positive"						
		Data point 3: (2, 1), label "negative"						
		Data point 4: (4, 6), label "positive"						

-	1				1			
		Data point 5: (5, 3), label "positive"						
		What would be the predicted label for the						
		new data point if k=1, k=3, and k=5?						
	b)	Apply the various steps involved in the	L3	CO2	7 M			
		support vector machine algorithm for						
		finding the optimal hyperplane when the						
		data is linearly separable.						
OR								
8	Co	npare k-nearest neighbor (KNN) algorithm	L4	CO4	14 M			
	and	the weighted k-nearest neighbor (WKNN)						
	algo	orithm, and how do these differences impact						
	the	accuracy and efficiency of these algorithms						
	in p	practice?						
		UNIT-V						
9	a)	Illustrate Extrinsic method used for	L3	CO3	7 M			
		measuring the clustering quality.						
	b)	Demonstrate the K-means clustering	L3	CO3	7 M			
		algorithm with an example.						
		OR						
10	Ho	w does the agglomerative hierarchical	L3	CO3	14 M			
	clustering algorithm work, and explain some							
	common linkage criteria used to determine the							
	distance between clusters at each step of the							
	algo	orithm.						
-	•		-					